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Fig. 6) Shore normal cross section through the W. Eulsuk Channel. Correlations are based on radiochemically derived data
with minor depth change interpretations to respect grainsize profiles. Distances between cores are indicated and grainsize
composition is represented as relative percentages.
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Fig. 1) Detailed study area map showing core sampling locations and cross sections.
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Fig. 7) Shore parallel cross section across the central portion of the Nakdong Estuary. Isochron identification is maintained from
Cross Section A-A'.
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Fig. 8) Complete grainsize composition profile and core photograph for
130-175 cm section of core ND 19. A rapid increase in silt and clay percentage
corresponds to the construction of the dam in 1934.

Table 1) Bathymetric survey data and accumulation rates for cores
located a maximum 150 m from survey points.

Core Dist. (m) 1985 Depth (m) 2009 Depth (m)  Sg.n (cm yr™)

ND 11 112
ND 12 148
ND 17 63
ND 18 66

-1.22 0.06 5.33
-1.01 0.12 4.70
-1.46 -0.70 3.18
-0.61 0.03 2.67
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Fig. 10) Interpolated sediment accumulation rates. Known values are based on
radioisotope analyses. Correlations of isochrons between cores were used to
calculate unknown rates. Letters correspond to conceptual model in Fig. 11.

Table 2) Comparison of radioisotope accumulation rates derived from
210ph,s and 137Cs profiles. Averaged rates were used for correlation.

Core 2%Ph Sp (cmyr")  "Cs Sy, (cmyr') Average (cmyr’)
ND 11 5.45 5.72 5.59
ND 12 6.25 6.85 6.55
ND 13 4.26 3.98 412
ND 15 4.48 4.91 4.69
ND 18 2.91 2.82 2.86
ND 19 2.03 2.36 2.19
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Fig. 5) Excess ?1°Pb and 137Cs profiles. Error bars for activity are indicated or occur within the range of the plot symbol. Regression line for 21°Pbys
and respective average accumulation rates (Savg) are shown within plot. Note different depth scales depending on core.
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Fig. 9) Representative X-radiograph sections from core ND 12. Location within core and key
features indicated.
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Fig. 11) Conceptual model for relative energy and facies distribution depending on dam discharge
for a wave-dominated estuary. A) No discharge released B) Periodic (weekly to monthly), low
energy discharge C) Consistent (daily to weekly), high energy discharge. Energy regimes are
indicated as being either marine, mixed, or dam discharge dominated, and relative energy inputs
are time averaged. Relative amounts of wave and tidal energy are assumed constant throughout
the estuary.

Conclusions:

The construction of two estuarine dams and numerous seawalls have greatly
modified the sediment transport dynamics of the Nakdong Estuary. These
modifications have eliminated large areas of intertidal zone, and
appreciably reduced the tidal prism and river discharge. Sediment flux to
the estuary is restricted to floodgate releases which produce high flow
velocities and episodic deposition.

The implications of these alterations are evident in a rapid geomorphologic
shift from tide-influenced to wave-dominated. High sediment
accumulation rates within the central estuary are due to a reduction in
accommodation space in the upper estuary. Additional evidence for this
reclassification occurs as a series of barrier islands that have developed
post-dam construction accompanied by a redistribution of facies.

The increase in sediment trapping efficiency that has ensued resulting
from extensive coastal construction provides the basis for
reevaluating traditional facies models for unaltered estuaries. The
observations made within this study have allowed the development of a
conceptual model for facies distribution according to relative discharge
energy of the adjacent floodgate.
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